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Abstract—The RISC-V Vector instruction set extension (RVV)
provides scalable data-parallel instructions suitable for accurate
and performant implementations of numerical algorithms across
many application domains [1]. The primary objective of this paper
is to share our experience implementing vector C99 <math.h>
(libm) functions using RVV. Our contributions are threefold:
First, we contributed an RVV port of SLEEF, a multi-platform
open-source vector libm. Second, we show that while SLEEF
simplifies porting efforts, it also precludes some RVV-specific
optimization opportunities. With SiFive’s X280 vector processor
micro-architecture as a case-study, we highlight RVV features
that optimized code can use. We also expand the discussion to
how these features might be used differently when optimizing for
other cores. Third, we compare the performance of our SLEEF
RVV port to our own RVV-native routines. We present results
from 1-ulp accurate implementations of Libm functions in a
cycle-accurate simulation of the X280 pipeline to show the impact
of RVV-enabled optimizations.

Index Terms—floating point, vector mathematical functions,
RISC-V vectors, scalable vectors.

I. INTRODUCTION

RISC-V is an open standard instruction set architecture
(ISA) designed to be modular and extensible, featuring a
small, mandatory base ISA and many optional extensions [2].
As most modern ISAs support data parallelism in the form
of single instructions that apply to multiple data (SIMD),
also called vector processing, RISC-V has ratified the Vector
extension (RVV) in November 2021. RVV contrasts with the
fixed-width SIMD ISAs that have proliferated since the late
1990s, in many ways more closely resembling the vector
ISAs of the two decades prior [3]. The C standard library
provides a collection of mathematical functions (‘Libm’)
defined on scalars. They cannot leverage vector processing
without sophisticated compiler intervention. Even if a compiler
could automatically vectorize a highly optimized scalar Libm
routine, the result may not be competitive with an algorithm
designed to target a vector machine.

As such, a number of vector math libraries have appeared
over the years, open-source and proprietary [4], [5]. SLEEF’s
algorithms are expressed in terms of a set of vector primitives
(‘intrinsics’), selected for being shared by many vector ISAs.
The objective is to simplify the effort of porting SLEEF to
a new ISA: all that is required is to provide a header file
that maps SLEEF intrinsics to the corresponding (sequences
of) instructions in the target ISA. In particular, no serious
experience with numerical algorithms is required. And in fact

we were able to port SLEEF to the RISC-V vector ISA (RVV)
in a few weeks1.

We hypothesized that the SLEEF implementations, designed
around ISA-agnostic intrinsics, might not take full advantage
of any particular ISA, like RVV. We set out to analyze its im-
plementations, going back to the underlying mathematics, then
reimplementing them using RVV from the outset, bypassing
the SLEEF intrinsics abstraction. Indeed, for all routines our
‘native’ RVV implementations obtained considerable speedups,
without loss of accuracy, over their SLEEF relatives. This
effort illuminated a few facets of RVV, which SLEEF was not
able to leverage, but that we think are particularly useful to
high-performance vector math library design.

II. VECTORIZING NONLINEAR FUNCTIONS WITH RVV

In Section II-A, we highlight four features of RVV relevant
for vector math algorithm design: vector register grouping,
vector-scalar operations, mixed-width arithmetic, and dynamic
vector length. Then, in Section II-B, we examine how these
features impact two problems at the heart of Libm algorithms:
polynomial evaluation and range reduction.

A. RVV ISA Features Relevant to Libm Construction

1) Vector Register Grouping: RVV adds 32 architectural
vector registers v0–v31 to the base ISA. Each vector register
has VLEN bits, where VLEN is an implementation-defined
power of two from 128 to 65536. A configurable length
multiplier (LMUL) allows multiple vector registers to be
grouped together and operated on by a single vector instruction.
It trades a gain of data-level parallelism (DLP), in the form of
longer application vectors, for a potential loss of instruction-
level parallelism (ILP), due to exacerbated register pressure.
This DLP is exploited temporally rather than spatially, i.e.
additional vector elements are processed over multiple cycles
of occupancy of the machine’s datapath — whose physical
width does not change — rather than simultaneously across
more parallel hardware. Increasing the temporal vector length
can improve utilization of long-latency functional units by
reducing stalls due to read-after-write (RAW) hazards between
dependent instructions, like chained multiply-adds arising in
polynomial evaluation, without increasing code size or control
flow complexity.

1See https://github.com/shibatch/sleef/pull/449



Conceptually, similar benefits can be achieved via program
transformations like loop unrolling or software pipelining. How-
ever, these techniques tend to increase code size — and thus
pressure on the instruction memory system — in proportion
to the unrolling factor or pipeline depth. Considering how
typical math library routines range from dozens to hundreds
of instructions, with long chains of dependent arithmetic,
these transformations should be applied conservatively. While
speculative, out-of-order execution and register renaming can,
in principle, implement these transformations dynamically,
pressure from large code size and long dependence chains
effectively downstreams onto the reorder buffer and branch
predictor.

2) Vector-Scalar Operations: Many arithmetic instructions
in RVV have “vector-scalar” forms, which source one of their
operands from the (scalar) integer or floating-point register
files. This avoids a common pattern in other vector ISAs,
where scalars must be explicitly broadcast (‘splatted’) to a
vector before being used in vector arithmetic. RVV vector-
scalar instructions avoid consuming a vector register in this
manner, thus reducing register pressure.

3) Mixed-Width Arithmetic: In order to produce accurate
results for mathematical functions, it is often necessary to
perform intermediate calculations with higher precision than
the input or output data. When the data is already at the
widest supported precision, error-free transforms (EFTs) are
especially useful [6], [7]. Otherwise, intermediates can leverage
a wider precision, e.g., using IEEE F64 intermediates when
targeting F32. Such widening and narrowing conversions are
straightforward in most scalar ISAs, but more challenging
in many vector ISAs. For example, it may be required to
split the vector in two, perform widening conversions and
subsequent arithmetic on each half individually, finally followed
by narrowing conversions and merging.

RVV supports mixed-width arithmetic instructions that can
avoid such overheads. For example the following operations
produce a 2 · SEW result: vfwadd.vv and vfwmul.vv
from two inputs of width SEW, the vfwadd.wv from a 2 ·
SEW input and an SEW input, and vfwmacc.vv from two
multiplicands of width SEW and an addend of width 2 · SEW.
Widened results are stored in a register group with twice the
registers, up to a maximum of 8. This limits their use to
functions using LMUL ≤ 4.

4) Dynamic Vector Length: RVV supports a programming
style that is VLEN-agnostic. The same software can be executed
without recompiling across hardware with different VLEN. For
fixed-width SIMD ISAs, this portability is usually achieved
with multiple implementations of the same function for different
SIMD widths, and run-time dispatch, in ‘fat’ libraries. With
RVV, there is no need to dispatch based on VLEN nor bloat
the library with VLEN-specific implementations. A scalable
vector ISA like RVV naturally simplifies library design.

RVV has a control register, vl, that governs how many
elements instructions process. vl-setting instructions take in
the application vector length (AVL) (e.g. a billion F32 numbers)
and set vl based on what the hardware actually supports

(perhaps just four). This removes any special handling for loop
remainders: the same loop body can execute using a vl as
small as 1.

In the context of a vector math library, we can support
a traditional ‘array API’, where the user passes pointers to
buffers and their length and the library does the stripmining,
or a ‘vector API’, where vectors are passed and returned along
with vl, and the user performs the stripmining. In practice,
the latter facilitates compiler optimizations.

B. Case Studies in Vectorizing Libm Functions

We now consider how the RVV features described above
apply to two tasks at the core of most Libm functions:
evaluating polynomial approximations, and accurately reducing
the range of the input argument to a finite interval.

1) Case Study: Polynomial Evaluation: Almost all numerical
algorithms for Libm functions require evaluating a polynomial
approximation of potentially large degree, making it a critical
component of runtime [8]. A common method is Horner’s
scheme, which minimizes the number of arithmetic operations.
Specifically, it evaluates P (x) = cnx

n + cn−1x
n−1 + · · · +

c1x+ c0 inductively, computing P0 with Pn = cn and Pi =
ci+xPi+1, usually with an FMA instruction. As such, Horner’s
scheme consists entirely of back-to-back dependent FMAs.

Other methods, such as Estrin’s scheme or ‘higher-order’
variants of Horner’s scheme, mitigate these data dependences
by exposing more ILP at the cost of increasing the overall
arithmetic [9], [10]. These techniques are crucial to effec-
tively utilize a machine with multiple arithmetic units (ALU).
However, our primary optimization target, SiFive’s X280, is
a microarchitecture with a single vector ALU2: while the
increased ILP of the alternatives enables hiding most of the
pipeline stalls, we see all of the arithmetic on the critical path,
and the loss of Horner’s optimality is evident.

On the other hand, we found that Horner’s scheme with
LMUL = 4 completely hides the latency of dependent FMAs,
and seems to be the best-performing option on the X280. In
general, for a chain of dependent arithmetic instructions that
process w bits per cycle over a depth-d (cycles) pipeline, RAW
hazard stalls are avoided when the vector length (in bits) is
sufficiently large, LMUL · VLEN ≥ wd. Of course, VLEN, w,
and d are machine parameters, and w and d generally differ
with instructions, so the best choice of LMUL will vary. This
motivates a programming style that keeps LMUL a tunable
parameter.

RVV vector-scalar FMAs only support scalar multiplicands,
but Horner’s scheme accumulates with coefficients in the
addend, so explicit splats are necessary for all but maybe
cn. RVV provides two mechanisms for this: splatting from a
scalar register and splatting from memory. The better approach
depends on the microarchitecture and the context.

Consider splatting from a scalar register as in Listing I. As
mentioned above, X280 has a single vector ALU; furthermore,
it uses this ALU to process the splat (vfmv.v.f), with

2See https://www.sifive.com/cores/intelligence-x280.



comparable occupancy to the subsequent FMA (vfmadd.vv).
Consequently, the splat and FMA execute in series, increasing
the arithmetic cost on the critical path.

LISTING I
SINGLE STEP OF HORNER’S EVALUATION SCHEME

1 # Assume register f0 contains coeff. c0
2 # and v4-v7 contains x, and v8-v11 P(x)
3 vfmv.v.f v12, f0 # v12[i] = c0
4 vfmadd.vv v8, v4, v12 # P(x)*x + c0

Since this code is executed within a stripmined loop, rather
than rematerializing the constant vector each iteration, we
consider hoisting the splat above the loop to amortize this
extra arithmetic. High vector register pressure may require us
to spill the constant vector, reloading it in each iteration prior
to its associated FMA. On the X280 this is often a profitable
choice: the vector load unit is independent of the vector ALU,
so while the latter is occupied with an FMA, the former can
proceed concurrently, loading the next (splatted) coefficient.

RVV’s strided vector memory operations enable a further
simplification, which we call splatting from memory. Rather
than spilling the splatted coefficient, we can simply store the
scalar to memory, and load it with a stride-zero vector load:

LISTING II
BROADCAST WITH ZERO-STRIDED LOAD

1 # Assume t0 holds pointer to coeff. c0
2 vlse32 v12, (t0), zero
3 vfmadd.vv v8, v4, v12 # P(x)*x + c0

As opposed to general strides, X280 optimizes the zero-stride
case to execute at high throughput, enabling us to perform the
splat using the vector load unit, rather than the vector ALU.

We have glossed over some contextual assumptions here, that
these loads hit in a nearby cache so that the memory latency is
readily hidden by X280’s decoupled microarchitecture, and that
there is little other contention for the vector memory system.
As with LMUL, we think the correct splatting technique should
be viewed as a tuning parameter. For example, if we added
another vector ALU to X280, we might prefer an alternative
to Horner’s scheme to expose vector ILP, but the single vector
load unit would not provide sufficient coefficient bandwidth, so
we might end up with a combination of splatting techniques.

2) Case Study: Range Reduction with Mixed-Width Arith-
metic: Polynomial approximations tend to provide acceptable
accuracy only for inputs inside a narrow interval, so most
Libm functions also include a range reduction step to map their
arguments to a subset of the reals. For example, a sin function
for F32 data might reduce its input to the [−π/2;π/2] domain.
Conceptually, this is accomplished by computing x− zπ for
some integer z. If π is approximated by a single floating point
number this may introduce intolerable roundoff error, so it is
necessary to use an extended-precision approach with more
bits of π, e.g. as an unevaluated sum C1 +C2 +C3 ≈ π. This
could be accomplished with heavyweight EFTs as in SLEEF, or
by using F64 intermediate values. RVV makes the latter option
attractive because its support for widening mixed-precision and

vector-scalar operations eliminates some of the complexity that
might otherwise be required. For example, Listing III from our
native RVV Libm computes the above expression efficiently.

LISTING III
ADDITIVE REDUCTION USING MIXED-PRECISION

1 # Assume registers f0+f1+f2 ~= -pi,
2 # v4-v7 contains x, and v8-v11 the
3 # reduction multiplier z
4 vsetvli s0, a1, e32, m4
5 vfmacc.vf v4, f0, v8 # x+z*f0
6 vfwmul.vf v16, v8, f1 # z*f1 (f64)
7 vfmul.vf v8, v8, f2 # z*f2
8 vfwadd.wv v16, v16, v4 # x+z*f0+z*f1
9 vfwadd.wv v16, v16, v8 # x+...+z*f2

10 vsetvli zero, zero, e64, m8
11 # ...cont. w/ wide reduced input v16-v23

The main body of code here is just five instructions; other vector
ISAs might require ten or more instructions to do something
similar in a native wide precision. At that point, it may be
preferable to use EFTs instead [11].

III. RESULTS

Performance and accuracy are the main tradeoffs when
implementing non-linear functions. In Section III-A, we present
benchmark results for four functions vectorized in both RVV-
agnostic and RVV-conscious ways. In Section III-B, we discuss
how we measured accuracy of our RVV-native library.

A. Performance Measurements

To illustrate the importance of the foregoing discussion, we
measured throughput of the F32 exponential, natural logarithm,
sine, and error functions using a cycle-accurate simulation of
X280, and present speedups against SLEEF’s “pure C” scalar
implementations in Table I. For reference, we include Newlib’s
scalar Libm, compiled with OBSOLETE_MATH_DEFAULT=0
for faithful roundings, as a more optimized scalar implementa-
tion. Next, we used our RVV port of SLEEF to establish an
RVV-agnostic vector performance baseline (“SLEEF”). Due to
SLEEF’s architecture, we were unable to support LMUL greater
than 2 in our RVV port1, which is one aspect of its incomplete
exploitation of RVV features. Finally, we benchmarked our
own RVV-native Libm functions to show the benefits of RVV-
conscious optimization (“SiFive”).

Our benchmarks apply the functions to an array of 1024
pseudo-random inputs, uniformly distributed in [0, 1]. For the
listed functions, a w subscript indicates that the implementation
performs some computations in F64, otherwise not. Missing
data in the form of a ‘–’ indicates that a corresponding
implementation could not be benchmarked. E.g. our internal
EFT functions do not support LMUL = 8, so we show a
result only for exp, which is implemented without EFTs; but
we suspect that for other functions excessive register spilling
would make performance worse, not better.

As suggested in Section II-B1, we expected LMUL = 4 to
be a sweet spot: indeed, the difference between LMUL = 4 and
LMUL = 8 in the one feasible case was negligible compared
to the speedups obtained from increasing to LMUL = 4. In



TABLE I
SPEEDUP OF LMUL & WIDENING VS. SLEEF SCALAR

SLEEF SiFive

Function Newlib m1 m2 m1 m2 m4 m8

exp – 8.1 12.2 10.8 19.4 30.0 31.7
expw 1.8 – – 12.5 21.0 28.9 –
log – 4.4 4.8 7.4 11.4 13.8 –
logw 2.3 – – 9.2 15.0 17.8 –
sin – 6.6 9.8 9.0 15.9 20.5 –
sinw 3.4 – – 14.1 24.7 32.7 –
erf 2.2 4.6 5.2 4.3 7.8 10.9 –
erfw – – – 16.5 28.2 28.8 –

functions where higher intermediate precision was needed,
widening to F64 typically provided additional performance.

B. Accuracy Measurements

Implementations are tested on the open-source functional
simulator QEMU against higher-precision reference functions,
with their maximum absolute error quantified in units in
the last place (ulps) following Muller’s Definition 6 [12].
Since univariate F16 and F32 functions and bivariate F16

functions have at most 232 inputs to check, exhaustive testing
is feasible [13]. The input space of bivariate F32 functions
and of F64 functions is too large for exhaustive testing, so we
use targeted testing and pseudo-random testing. For targeted
testing, inputs are sampled from domains of interest, e.g. when
close to overflow or underflow, normal powers of two, infinities,
zeros, NaNs, and mantissa patterns. For pseudo-random testing,
we do not want to sample inputs from a uniform distribution
over R because some binades may never be covered. Instead,
integers are uniformly generated using scrambled linear pseudo-
random number generators [14], then type-punned to same-
width floating-point numbers and passed as inputs to library
functions. This makes it highly likely all binades are covered
given enough testing.

While SLEEF implementations are comparatively “mature”
and presumed correct to their advertised accuracy, our testing
identified a number of accuracy issues3. Using this framework
we have grown confident that our RVV Libm functions
have below 1 ulp maximum error, c.f. Table II, and that
our comparison to their equivalents in SLEEF and Newlib
in Section III-A is fair.

IV. CONCLUSION

We have shown how several features of RVV can be
leveraged in the design of efficient vector math functions.
First, the reconfigurable vector register file enables software
to increase the temporal vector length, which can better
hide the pipeline latency of functional units in polynomial
evaluations. Second, vector-scalar instructions can reduce
the pressure on vector register groups. Third, mixed-width
arithmetic instructions can simplify algorithms that manipulate
intermediate quantities in higher precision. Finally, dynamic

3See SLEEF Issues 451, 452, 457, 460, 461, 465, and 466.

TABLE II
FUNCTION ACCURACY IN ULPS

Function Newlib SLEEF SiFive

exp – 0.9312 0.8912
expw 0.5016 – 0.8912
log – 0.5906 0.5972
logw 0.8177 – 0.6182
sin – 0.9036 0.9973
sinw 0.5607 – 0.9840
erf 0.9679 0.9998 0.9998
erfw – – 0.9467

vector length simplifies writing portable, high performance
software.

Our SLEEF port to RVV demonstrated significant speedups
on SiFive X280 over Newlib. Our implementations, designed
to leverage the aforementioned RVV features, outperform
SLEEF with comparable (1-ulp) accuracy. Such RVV-specific
techniques run counter to SLEEF’s ISA-agnostic design, thus it
may be more appropriate to pursue them as a separate project.

Future work concerns extending the LLVM compiler to
leverage our library via “libcall widening”. For example, in a
program that applies exp componentwise to an array, LLVM’s
vectorizer can fuse scalar calls into fewer invocations of a
vector version.
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